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H I G H L I G H T S

• Air pollutant spatial variations are a
function of pollutant and land use.

• Mobile monitoring shows that urban
stationary monitors represent
areas< 1 km2.

• Variation in pollutant concentration is
related to spatial variability in land
use.
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A B S T R A C T

Long- and short-term exposure to airborne pollutants results in adverse health effects. Regulatory monitors can
be used to determine if regional concentrations meet regulatory standards of air pollution. As assessments of air
pollutant exposure become more spatially resolved, evaluation is needed to assess the spatial representativeness
of monitors in different environments. We measured NO2, ultrafine particle concentration (UFP), and PM1 with
both stationary and mobile platforms in Pittsburgh, PA in 2016 and 2017. We sampled in eight ∼1 km2

neighborhoods representing different land use and exposure regimes (e.g., urban and suburban, high and low
traffic). Mobile sampling was conducted on up to 25 days in each neighborhood to study fine-scale spatial
variation in pollutant concentrations. NO2 exhibited within-neighborhood spatial variation, with hotspots ele-
vated by up to a factor of 5 above the regional background. Spatial differences in UFP within the same 1 km2

neighborhoods could be a factor of 2.4 times regional background. PM1 was more regional and less spatially
variable. Most neighborhoods exhibited less than 1 μgm−3 spatial variability in PM1. Spatial variability of NO2

and UFP showed moderate correlation (R2 > 0.5) with traditional land use covariates such as traffic volume and
restaurant density. We used the Wilcoxon rank-sum test to calculate the fraction of each neighborhood re-
presented by the same underlying concentration distribution. PM1 was the most spatially homogeneous, with
80–100% of each 1 km2 area being statistically similar to a reference location. Quantifying pollutant spatial
patterns with high fidelity (e.g., < 2 ppb NO2 or<1 μgm−3 PM1) seems unattainable in many urban areas
unless the sampling network is significantly dense, with more than one or two nodes per km2.
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1. Introduction

Air pollution exposure is associated with numerous adverse health
effects, including cardiovascular disease, diabetes, and lung cancer
(Brook et al., 2010; Cohen et al., 2017; Di et al., 2017a, 2017b; Lim
et al., 2012; Pope et al., 2009; Raaschou-Nielsen et al., 2013; Strak
et al., 2017). Long-term exposure to fine particulate matter (PM2.5) is
accountable for 7 million premature deaths annually (Brauer et al.,
2016). Even in areas that meet the U.S. Environmental Protection
Agency (EPA) air quality standards, chronic exposure to PM2.5 con-
tributes to excess health risks (Di et al., 2017b). The PM dose-response
curve is super linear at low concentrations (Burnett et al., 2014; Di
et al., 2017a, 2017b) so concentration reductions beyond the current
EPA and World Health Organization air quality standards continue to
accrue benefits (Marshall et al., 2015). Short-term exposures to PM2.5

are also relevant. Di et al. (2017a) recently demonstrated that a
10 μgm−3 increase of daily (24-hr) PM2.5 exposure was significantly
associated with a relative increase of 1.05% in mortality rate, even at
concentrations below national air quality standards.

While PM2.5 exposure dominates the health risks and costs asso-
ciated with air pollution exposure (Cohen et al., 2017), other air pol-
lutants can impact human health. The EPA regulates seven criteria
pollutants (PM2.5, PM10, CO, NO2, O3, SO2, Pb) through ambient con-
centration standards. In addition to these pollutants, particle number
(PN) concentration, especially the concentration of ultrafine particles
(UFP, particles with diameter less than 100 nm), is a pollutant of con-
cern because it may have health effects distinct from PM2.5 mass (Hama
et al., 2017; Health Effects Institute, 2013; Kerckhoffs et al., 2016;
Klompmaker et al., 2015; Leoni et al., 2016). UFP is highly dynamic in
both space and time (Klems et al., 2010). Due to its small physical size,
UFP can penetrate deep into the respiratory system, thus potentially
causing a more direct impact on human health (Stafoggia et al., 2017).

Regulatory monitoring networks, such as the EPA Air Quality
System (AQS), are essential tools for monitoring compliance with am-
bient air pollution standards. They are also a valuable resource for
evaluating predictions from chemical transport models (CTMs) (Friberg
et al., 2017). However, regulatory-grade instruments at individual
monitoring stations are expensive and costly to maintain, and therefore
stations are sparsely distributed. Numerous studies have shown that
both individual pollutant concentrations (Eeftens et al., 2012; Li et al.,
2016; Wang et al., 2013) and PM2.5 composition (Li et al., 2018; Tan
et al., 2016, 2014a) have small-scale spatial variations that are not
captured by the regulatory network. These spatial variations create
variations in human pollutant exposures and resultant health impacts
(Di et al., 2017b; Jerrett et al., 2005).

Multiple lines of research have emerged with the goal of better
characterizing spatial variations in air pollutant concentrations, in-
cluding low-cost sensor networks, mobile sampling, and improving the
spatial resolution of CTMs to ∼1 km2. Increased availability of low-cost
sensors has fostered interest in deploying them for ambient applications
(Kumar et al., 2015; Snyder et al., 2013; Zimmerman et al., 2018a). One
primary application of these sensor networks is to supplement reg-
ulatory monitors and provide spatially-resolved air pollutant con-
centration fields. These lower-cost sensor networks hold promise to
inform pollutant spatial patterns, and therefore gradients in human
exposure, with high fidelity due to advances in calibration algorithms
and sensor quality (Cross et al., 2017; Jiao et al., 2016; Spinelle et al.,
2015; Zimmerman et al., 2018a).

One important and often unanswered question relevant to the de-
ployment of both regulatory monitors and lower-cost sensors is the
spatial representativeness of the monitoring locations. To first order, we
expect a monitor in a rural park to be representative of a larger area
than a roadside location in an urban street canyon (Piersanti et al.,
2015; Vardoulakis et al., 2005). For example, Vitali et al. (2016) de-
termined that an industrial air quality monitoring station was re-
presentative of a roughly 250m by 250m area, and Shi et al. (2016)

used geostatistical methods determine that PM2.5 concentrations in
Hong Kong varied significantly over spatial scales of 300m. However,
we are unaware of any studies that attempted to characterize the spatial
representativeness of multiple stationary pollutant monitors located in
different microenvironments across an entire city.

Traditionally, regional CTMs have been operated with spatial re-
solution on the order of tens of kilometers (e.g., 16×16 or
32× 32 km; Roohani et al., 2017). Model skill is evaluated by com-
parison of simulation results to reference network measurements, ty-
pically using monitors located in the urban background or other loca-
tions with minimal source impacts (Friberg et al., 2017). Increasing
CTM spatial resolution, for example modeling at 1 km2 resolution over
a city, introduces two specific challenges. First, a larger number of
sampling locations are required to evaluate model performance. Dis-
tributed networks of low-cost sensors can be used for this purpose.
Second, the variability within each grid cell needs to be known in order
to constrain uncertainties. Unless low-cost sensors are deployed at very
high spatial densities (> 1 per km2), they cannot inform the sub-grid-
scale variability.

Mobile monitoring is well suited to quantify pollutant spatial var-
iations at fine (sub-km) length scales. Numerous studies have demon-
strated the ability of mobile sampling to resolve pollutant spatial dif-
ferences near specific sources (e.g., roadways), as well as to map
neighborhood-level differences within a city (Apte et al., 2017;
Deshmukh et al., 2016; Hankey and Marshall, 2015; Li et al., 2018,
2016; Steffens et al., 2017; Ye et al., 2018). A major challenge with
mobile sampling is to collect enough data in a given location to accu-
rately quantify annual- or other long-term average concentrations,
though identifying hotspots or consistent gradients between neighbor-
hoods requires less data (Tan et al., 2014b; Apte et al., 2017; Messier
et al., 2018).

This manuscript combines mobile and stationary sampling to better
understand sub-km variability in pollutant concentrations and to
quantify the spatial representativeness of pollutant concentrations
measured by stationary monitors. We coupled mobile and stationary
sampling in a variety of neighborhoods in a single U.S. urban area in
order to address three specific questions: (1) How spatially re-
presentative is a stationary pollutant monitor? (2) How does the spatial
representativeness of a stationary pollutant monitor vary with modifi-
able factors related to land use and emissions? (3) What impact does
spatial representativeness have on the ability of CTMs to predict con-
centration fields? By extension, our analysis allows us to determine how
many monitors are needed per km2 to quantify pollutant concentrations
within specified tolerances as a function of land use and urban form.

2. Material and methods

This study combines mobile and distributed stationary sampling.
Data were collected as part of the Center for Air, Climate, and Energy
Solutions (CACES) air quality observatory (Zimmerman et al., 2018b).
The stationary samplers provide data on the long-term differences in
pollutant concentrations between urban neighborhoods (e.g., down-
town central business district versus residential versus an urban park).
Mobile sampling is layered on top of the network of distributed sam-
plers in order to characterize small-scale (sub-km) variability around
each stationary sampler. The combined dataset, therefore, informs
average concentrations in specific neighborhoods along with the spatial
variation within each neighborhood; these data can then be used to
understand how spatially representative each stationary sampling lo-
cation is as well as to understand the potential uncertainty in model-
measurement agreement for CTM evaluation as a function of stationary
sensor placement.

Measurements were conducted in Allegheny County, PA, which is
centered around the City of Pittsburgh. The county's landscape is
characterized by a plateau cut by three river valleys. The air quality is
influenced by the interaction of regional pollutants transported from
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power plants and other upwind industrial emissions with local in-
dustrial and traffic sources. Diverse point sources are distributed in the
county, including the largest metallurgical coke plant in the U.S., steel
manufacturing facilities, and power plants.

2.1. Sampling campaign overview and neighborhood selection

As noted above, the sampling campaign included a combination of
distributed stationary monitors with mobile sampling around each
stationary monitor (Fig. 1). Herein, we adopt the following nomen-
clature. Stationary monitors are referred to as “sites.” The corre-
sponding mobile sampling domain around each site is called an “area”
or “neighborhood.” Table 1 lists all of the sampling sites/areas in this
study, as well as the dates of operation for the stationary samplers.
There is one stationary sampler per driving area, except area 2, which
covers the Pittsburgh downtown central business district and has three
monitors.

Fig. 1 and Table 1 show the locations and details of each sampling
area. The sites in Table 1 are numbered along the prevailing wind di-
rection. Regional winds are typically from the southwest (Supplemental
Information, Fig. S1), so the sampling sites cover an area from upwind
of the downtown central business district to downwind residential

areas.
The sampling sites were selected to span a variety of micro-en-

vironments. All sampling areas were classified with three stratification
variables (Table 1) to represent the impacts of local sources and land
use on measured pollutant concentrations. These stratification variables
are traffic, restaurants, and building height. Traffic (Apte et al., 2017;
Karner et al., 2010; Saha et al., 2018a) and restaurants (Robinson et al.,
2018; Vert et al., 2016) are chosen because they are associated with
known air pollutant emissions sources. We expect higher pollutant
concentrations in high-traffic and high-restaurant areas. Building
height is selected as a proxy for street canyon effects, which is a land
use factor that can modify concentration patterns near roadways (Tang
et al., 2013).

Stratification for each of these variables is binary. For example, each
area is either ‘high traffic’ or ‘low traffic’ as shown in Table 1. Table 1
lists the mean value of each stratification variable for each area, as well
as the overall classification of that area as ‘high’ or ‘low’ for that vari-
able. The traffic criterion is vehicle density determined from annual
average daily traffic counts (AADT) divided by road length (vehicles per
day per meter). The restaurant criterion is restaurant counts per square
km. The building height criterion is the mean building height in the
neighborhood. Data for land use stratification are collected from several

Fig. 1. Overview of the sampling domain in Pittsburgh and Allegheny County, PA. Sampling sites and neighborhoods are numbered according to the predominant
wind direction—southwest to northeast. The locations of the stationary monitors are indicated with red circles. Mobile sampling was conducted in ∼1 km2 areas
around the stationary monitors, as shown with the black polygons. The mobile sampling areas roughly corresponded to the boundaries of specific neighborhoods.
Each neighborhood had one stationary monitoring site with the exception of neighborhood 2, which had three stationary samplers as shown in the bottom right
panel.

Table 1
Overview of the sampling network. Site/Area ID is defined based on geographic locations from southwest to northeast, consistent with prevailing wind direction.
Sites/areas are classified as either high (H) or low (L) for each of three stratification variables. The mean value for each stratification variable in each area is reported.

Area ID Site name Traffic (Veh/day/m) Restaurant (km−2) Building height (m) Distributed monitor operating dates Number of mobile sampling days

1 Mt Washington 2.4 (L) 14 (L) 3 (L) 01/2017–03/2017 10 (Winter 10)
2 Downtown-Penn (2A)

Downtown-Mellon (2B)
Downtown-Grant (2C)

15.8 (H) 141 (H) 49 (H) 01/2017–03/2017 25 (Summer 6, Winter 19)

3 South Side 3.7 (H) 71 (H) 8 (H) 01/2017–03/2017 16 (Summer 2, Winter 14)
4 Hill District 3.3 (H) 9.4 (L) 7 (H) 08/2016–03/2017 19 (Summer 8, Winter 11)
5 Strip District 5.1 (H) 25 (H) 17 (H) 08/2016–09/2016 18 (Summer 11, Winter 7)
6 Lawrenceville 4.2 (H) 47 (H) 8 (H) 08/2016–03/2017 14 (Summer 11, Winter 3)
7 Highland Park 2.3 (L) 5.5 (L) 3 (L) 08/2016–09/2016 12 (Summer 7, Winter 5)
8 Aspinwall 6.4 (H) 11 (L) 3 (L) 08/2016–09/2016 9 (Summer 6, Winter 3)
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publicly-available sources (Allegheny County Information Portal, 2017;
Department of City Planning, 2017; City of Pittsburgh GIS Data, 2015;
US Census Tiger, 2010).

Mobile sampling was conducted inside a predetermined ∼1 km2

area around each stationary monitor, shown by the black polygons in
Fig. 1. We tried to center the stationary monitors within each driving
area, as this would help us answer if the monitor would be re-
presentative of its surrounding air pollution pattern, though this was
not possible for every neighborhood. The 1 km2 neighborhoods were
selected to represent different land uses, and the boundaries of the
sampled neighborhoods generally match with the boundaries of
neighborhoods as defined by the city of Pittsburgh. For example,
neighborhood 2 coincides with the downtown central business district
and is ‘high’ in all three stratification variables. Neighborhoods 3
(South Side) and 6 (Lawrenceville) are mixed-use commercial and re-
sidential areas; while they are ‘high’ in all three stratification variables,
they have less traffic, fewer restaurants, and shorter buildings than
downtown. Purely residential areas like neighborhood 1 (Mt. Wa-
shington) and 7 (Highland Park) are ‘low’ for all three stratification
variables.

Mobile sampling was conducted on weekdays during dry conditions
to avoid biases due to weekday-weekend emissions patterns and from
pollutant rainout. Each time we sampled in a neighborhood, we drove
through all public roads at least once. Sampling typically took
45–60min per neighborhood, and we typically sampled 3–5 neigh-
borhoods on each sampling day. For each neighborhood, measurements
were taken during morning (5–10 AM), midday (11 AM-4 PM) and
evening (5–10 PM) periods on different days, so that concentration data
are not biased due to the time-of-day patterns of local emissions. Each
area was visited on at least nine different weekdays spread in summer
(August and September) and winter (November–February). Details of
the mobile sampling are shown in Table 1, and additional information
on the mobile sampling strategy is described in Gu et al. (2018) and
Zimmerman et al. (2018b).

2.2. Air pollutant measurements

The sampling network was composed of a mobile laboratory and
distributed stationary monitors. Table S1 in the Supplemental In-
formation outlines the full suite of instruments as well as the sampling
and calibration frequencies. The distributed monitors were all equipped
with a low-cost sensor package, the real-time affordable multipollutant
sensor (RAMP), to measure concentrations of gaseous pollutants. The
RAMP was described in detail in Zimmerman et al. (2018a) and Malings
et al. (2018). Briefly, the core components of the RAMP were Alpha-
sense electrochemical sensors (Alphasense Ltd., UK) for measuring CO,
O3, SO2, and NO2. Raw sensor outputs were converted to concentrations
using a previously developed machine learning calibration
(Zimmerman et al., 2018a). The RAMPs reported gas concentrations
every 15 s, which were further down averaged to 15min for data
management purposes.

The distributed monitors were also equipped with MetOne
Neighborhood PM monitors (MetOne Instruments, Inc., OR, USA) to
quantify optical PM2.5 mass via nephelometry. We applied a humidity-
based hygroscopic growth factor correction (Petters and Kreidenweis,
2007) to reduce errors due to particle-bound water at high relative
humidity. Some of the distributed monitors had a co-located water-
based condensation particle counter (Aerosol Dynamics Inc., Berkeley,
CA) for quantifying particle number (PN) concentration, which we use
as a proxy for UFP concentrations. PM2.5 and UFP measurements were
reported along with gaseous pollutants at 15 s resolution and down
averaged to 15-min resolution.

A mobile laboratory was used to examine pollutant spatial patterns
around each stationary monitor. The mobile laboratory was a gasoline-
powered van that has been described in detail previously (Li et al.,
2016; Tan et al., 2014a). Power was drawn from the van engine via a

converter and then dispatched to instruments. Two stainless steel
sampling lines were installed on top of the van. The sampling inlets
were about 4m above the ground and located in front of the vehicle
exhaust to avoid self-sampling. A Bad Elf GPS logger (Bad Elf, CT, USA)
recorded the mobile sampling location every 1 s.

While we did not specifically test for impacts of self-sampling in this
study, we have considered it extensively in the past and found it to be
negligible (Tan et al., 2014a; Li et al., 2016; Robinson et al., 2018). In
order for self-pollution to be a major concern under most driving con-
ditions, the wind needs to be coming from the tail of the vehicle at a
speed faster than our typical driving speed (∼20–25 miles per hour).
Tan et al. (2014a) found that the incidence of pure tail winds was a
small fraction of the sampling time (mean=7%), and Robinson et al.
(2018) saw no evidence of self-sampling in aerosol mass spectrometer
data collected while in motion.

The mobile laboratory uses two sample inlets. One sampling line
was for particle measurements including PM1 (particulate
matter< 1 μm diameter) composition measured by a Time of Flight
Aerosol Mass Spectrometer (AMS) (Aerodyne Research Inc., Boston,
MA) (DeCarlo et al., 2006; Jayne et al., 2000), black carbon (BC) by
Aethalometer (Magee Scientific AE-33, CA, USA), and ultrafine particle
number (UFP) from a Fast Mobility Particle Sizer (FMPS, size range
5.6–560 nm) (TSI Incorporated, MN, USA). We did not design the
sampling probe to be isokinetic under in-motion sampling conditions.
Before the air flow reached these particle instruments, it was size se-
lected with a 2.5 μm cyclone at a controlled flow of 16.7 SLPM. The sum
of particle composition from the AMS (organic and inorganic) plus the
BC from Aethalometer yielded the PM1 mass. The AMS was operated in
fast mass spectrum mode and output data at 20 s resolution (Kimmel
et al., 2011). BC data were recorded at 1-min resolution.

The FMPS raw output was calibrated based on Zimmerman et al.
(2015). The FMPS is prone to vibrational interference that can create
unrealistic size distributions during mobile sampling. Fig. S2 (Supple-
mental Information) shows an example of an FMPS size distribution
impacted by vibrational interference. The ∼40–60 nm size bins re-
ported zero particle counts when the van hit a bump on the road,
creating unrealistic size distributions. FMPS data were therefore filtered
based on the number of zeros in middle size bins during analysis to
remove these instances. UFP concentrations were reported every 1 s.

The other sampling line was for gas phase instruments, including a
NOx analyzer (API-Teledyne T200) and CO analyzer (API-Teledyne
T300). A HEPA filter was placed in the sampling line to remove parti-
cles before sample air reached the gas instruments. All gas instruments
reported data every 1 s.

2.3. Data treatment and QA/QC

Routine calibration and maintenance were performed for both
sampling platforms. Table S1 in the Supplemental Information lists the
frequency of calibrations for all instruments in the mobile lab and the
stationary monitors. All gas monitors used in the mobile laboratory
were calibrated weekly, and all calibrations were zero/span checks. We
did not perform multi-point calibrations for gas monitors.

An AMS ionization efficiency calibration was performed every time
the AMS was unloaded and reloaded from the mobile laboratory. The
AMS collected one HEPA filtered blank sample per day for use in air
beam corrections. The FMPS was zero cleaned by attaching a HEPA
filter at the inlet and observing the fall in particle counts. This was done
before each sampling trip.

The gas sensors used in the distributed monitors were calibrated
according to the method outlined by Zimmerman et al. (2018a) via co-
location with reference monitors prior to deployment in the field. After
deployment (deployment periods are listed in Table 1), the calibration
was checked again via co-location with reference monitors. As reported
by Zimmerman et al. (2018a) and Malings et al. (2018), we observed
minimal drift in the pre- and post-calibration and therefore no post-
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corrections were made to the data.
The MetOne PM2.5 output was first corrected based on hygroscopic

growth factor (Petters and Kreidenweis, 2007), and then further cor-
rected using a linear regression against reference PM monitors (BAM-
1020, MetOne Instruments, Inc., OR, USA) at a nearby regulatory
monitoring station (Malings et al., in prep).

The raw output from the distributed CPCs was adjusted based on co-
location tests with a butanol CPC (TSI Incorporated, MN, USA) in the
lab (Saha et al., 2019). We eliminated any CPC data with error codes,
counts less than 100 cm−3 (an indication of a dry wick) or counts
greater than 1,000,000 cm−3 (spikes due to power cycling).

Stationary monitor measurements were filtered for extreme con-
centrations. Outlier filtering followed the method used in the ESCAPE
study; outliers are defined as values either larger than the 75th per-
centile plus four times the interquartile range or less than the 25th
percentile minus four times the interquartile range (de Hoogh et al.,
2013). This outlier filtering only applied to distributed monitor data.
Mobile sampling data were expected to show more episodic events and
broader concentration range compared with stationary monitor mea-
surements because of spatial source impacts and different resolution in
instrumentation (Tan et al., 2014a), so the mobile data were not fil-
tered.

We took additional QA/QC steps to ensure that mobile sampling
data were not driven by error or non-representative spikes. Each sam-
pling drive had a co-pilot whose main task was to log spike events and
identify doubtful peaks (e.g., a large spike in CO or NO2 in a park with
no vehicles nearby). When we analyzed the raw data, we referred to
these notes to screen out low-quality data, though these sorts of spikes
are exceedingly rare.

Mobile measurements of 1 Hz gases and UFP were spatially allo-
cated to 50m grid cells based on GPS information after correcting for
residence time in the sampling line. PM1 was reported at 20 s resolu-
tion. Therefore, we employed 100m grid cells and joined PM1 mea-
surements to the mean GPS latitude and longitude in each 20-s time
window.

2.3.1. Temporal corrections
Mobile sampling convolves temporal and spatial variations in

measured concentrations. Isolating the spatial variations, therefore,
requires background subtraction to remove temporal fluctuations due
to, for instance, boundary layer shifts over the course of the day. We
applied two temporal corrections to the mobile data used here; the
methods are described briefly below and shown in detail in the
Supplemental Information.

The first correction method is a variation of the rolling constant
percentile subtraction method applied in other studies (Brandt, 2007;
Larson et al., 2017; Simon et al., 2017; Gu et al., 2018). We first smooth
the high frequency (1-Hz or 20-sec) data with a 1-min median to re-
move short-term spikes caused by nearby sources. We then calculate the
5th percentile of the smoothed data in a rolling 1-h window. We define
this 5th percentile as the temporally-varying regional background;
concentrations in excess are deemed local variations. The time base of
one hour was selected because a visit to each 1 km2 neighborhood took
about one hour. We typically drove in regional background areas
during transit between neighborhoods. Thus, within each one-hour
period there is data collected in a regional background location. Fig. S3
in the SI shows the sensitivity of the background correction to the
averaging time window. Using a time base of thirty minutes or two
hours did not result in statistically different background concentrations.

A second background correction leverages the stationary sampling
monitors. We first use wavelet decomposition (Klems et al., 2010;
Sabaliauskas et al., 2014) to isolate concentration changes occurring
with time variation greater than 8 h at each stationary sampling
monitor. Then, for each 15-min sampling window, we define the
monitor with the minimum decoupled concentration as the regional
background and subtract this value from the mobile sampling data.

The two background correction methods are compared in Fig. S4.
For the times of day containing the majority of mobile sampling data
(∼6 am–9 pm), the two methods agree within ∼2 ppb for NO2

and< 1 μgm−3 for PM1. We chose the wavelet correction method for
NO2 and PM1 because stationary monitors are less affected by local
source impacts and their continuous operation provides a more accu-
rate description of temporal variation (Brantley et al., 2014). We apply
the rolling 5th percentile corrections for UFP because not every site had
a CPC, and because of extensive downtime for some of the CPCs during
concurrent mobile sampling periods.

2.3.2. Representativeness of mobile sampling data
In addition to temporal corrections described above, the second

challenge with mobile sampling is the limited number of data points
collected at each spatially distributed location. Even after temporal
correction, mobile sampling data within a specific grid cell must be
summarized over a sufficient number of data points (or days) to obtain
a concentration, and concentration pattern, that is representative of
long-term conditions.

Several studies have investigated data requirements for mobile and
distributed sampling (Apte et al., 2017; Hatzopoulou et al., 2017; Tan
et al., 2014b), though a specific consensus on data requirements for
mobile sampling has not been agreed upon in the literature. One recent
paper by Apte et al. (2017) oversampled a small area of Oakland, CA
and conducted mobile sampling on 50 unique days. Systematic sub-
sampling of this massive dataset showed rapid improvement in both
correlations with the long-term median and reduction in error up to 10
sampling days, modest improvement from 10 to 20 days, and less im-
provement for 20–50 days. To first order, this suggests that between 10
and 20 sampling days per grid cell are required to determine robust
long-term (annual or seasonal) concentrations, though data require-
ments for determining spatial patterns (e.g., ranking each grid cell or
identifying hot spots) is smaller (Tan et al., 2014b; Van den Bossche
et al., 2016).

We tested the mobile sampling requirements for our dataset using
the stationary samplers. Fig. S5 in the Supplemental Information shows
the result of bootstrap resampling of data collected at two stationary
monitors: 2A and 4. For this analysis, we randomly selected a single
data point from each of N days, where N ranged from 1 to 50. This
selection was iterated 1000 times for each value of N in order to de-
termine the bootstrapped median concentration. For each of the pol-
lutants of interest (PM1, NO2, and UFP), the subsampled median con-
verges to the actual median after 5-10 separate sampling days.
Additional samples after the 10th day reduce the uncertainty in the
subsampled median. Thus, our stationary data seem to verify that ap-
proximately ten days of mobile sampling are required to resolve robust
spatial patterns. Alternatively, the bootstrap resampling can be con-
ducted for a specific number of data points collected in a single grid
cell, regardless of whether or not some are collected on the same day.
Our analysis shows that a stable median is reached after ∼20 samples
per 50m grid cell.

3. Results and discussion

3.1. Agreement between mobile vs. distributed monitors

The first step in our analysis is to compare the mobile and stationary
measurements. While we do not expect perfect agreement between the
two sampling platforms (e.g., mobile and stationary sampling locations
are not identical), we do expect to observe a similar spatial pattern.
Fig. 2 shows the comparison of mobile and stationary measurements of
NO2. Overall, the two platforms agree for NO2, and we observed similar
agreement for the other measured pollutants. Concurrent NO2 mea-
surements from mobile sampling and distributed monitors showed
moderate correlation (Pearson's r, 0.51). Both the mobile and stationary
datasets describe a similar NO2 urban enhancement, with ∼5 ppb more
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NO2 for urban areas 2 and 3 compared to downwind area 7. The mobile
data are more variable than the stationary data (e.g., larger inter-
quartile range), as would be expected for on-road sampling.

Downwind area 8 exhibited the largest discrepancy between mobile
and distributed monitor. This occurred because the stationary sampler
was located ∼5m from a highway, whereas the nearest road sampled
by the mobile laboratory was ∼50m from the stationary sampler. The
roads sampled in area 8 were also generally upwind of the stationary
sampler. Thus, the stationary monitor measured higher concentrations
of NO2 than mobile measurements. This illustrates the rapid decay of
traffic-related pollutants within 100–200m away from roads (Karner
et al., 2010).

3.2. Mobile sampling: spatial variability in each area

Mobile sampling shows that, as expected, pollutant concentrations
are spatially variable within each area. Fig. 3 shows the temporally-
corrected NO2 variability mapped at 50m spatial resolution inside each

mobile sampling area. Each sampling area is similar in total size
(∼1 km2), but the number of sampled 50-m grid cells in each area
varies based on road density. Urban areas, therefore, have larger
numbers of 50-m grid cells than suburban areas.

The color of each grid cell in Fig. 3 represents the NO2 enhance-
ment, which is the median NO2 concentration above the regional
background. Grey cells are within 50% of the regional background
(7 ppb in the study region), with values ranging from 4 to 10 ppb.
Yellow cells have median concentrations that are double the back-
ground, and red cells are three times higher than the background. Grid
cells without a color fill are ones with insufficient data, as defined
above in section 2.3.2. For this analysis, we only consider grid cells with
at least 20 mobile data points over 9 or more sampling days.

As expected, we observe both intra- and inter-area variability in
NO2 concentrations. Area 1, which is largely residential and low traffic,
is essentially background with little or no NO2 enhancement. Area 2,
which includes the downtown central business district, has both the
largest absolute NO2 enhancement above the regional background as
well as significant inter-grid variability, with concentrations ranging
from background to 51 ppb. This is due to the combined influence of
traffic and building height induced street canyon effects (Harrison,
2018). Area 3, another urban sampling area, is less spatially variable
than area 2 but is consistently elevated above the background. Areas 4,
5 and 6, which have a mixture of residential and commercial areas,
have more than half of their 50m grid cells as grey regional back-
ground. One grid cell in area 6 located at the junction of several major
streets has the highest NO2 enhancement across all the neighborhoods.
Downwind areas 7 and 8 have both lower concentrations and less
spatial variability and resemble area 1.

Fig. 3 shows that there is different NO2 spatial variability in various
neighborhoods. Urban areas tend to have both higher NO2 concentra-
tions and sizeable spatial heterogeneity (average interquartile range,
IQR, of NO2 enhancement for areas 2–6 is 3 ppb) than background
suburbs (average IQR of NO2 enhancement for areas 1, 7, and 8 is
1 ppb), which means that a reference monitor located in an urban
center might be less representative of nearby concentration fields. This
finding also suggests greater uncertainty in CTM predictions when

Fig. 2. Contemporaneous NO2 measurement comparison between distributed
monitors and mobile measurements inside corresponding 1 km2 areas. The top
and the bottom of the boxes represent the 75th and 25th percentiles. The line
inside the box is the median. The whiskers extend to the most extreme con-
centrations not classified as outliers.

Fig. 3. Temporally corrected median NO2 enhancement above regional background across all sampling days mapped with 50m resolution inside eight ∼1 km2

mobile driving areas. Area number is labeled on top with details listed in Table 1.
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Fig. 4. Spatial variation of (A–B) NO2, (C–D) UFP, and (E–F) PM1 relative to pseudo monitor in the 1 km2 mobile driving areas 2 and 4. Grid cells are colored based on
the median concentration difference relative to the reference cell (black dot). The PM1 maps have larger grid cell size (100m vs. 50 m) due to the lower temporal
resolution of the measurements.
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comparing to urban monitors than rural or remote regulatory monitors.
CTMs divide the prediction area into grid cells and assume that point
measurements from a monitor can represent the entire grid cell (Friberg
et al., 2017). Fig. 3 suggests that concentration patterns in 1 km2 CTM
grids may not have a single representative concentration.

3.3. Spatial concentration differences relative to pseudo monitors

In this section, we use the temporal variations measured by the
distributed monitors (Fig. S6, Supplemental Information) to assist in
mapping ‘true’ spatial variations relative to pseudo monitors. Results
for the central business district (area 2) and an urban residential
neighborhood (Hill District, area 4) are shown in Fig. 4. Additional
comparisons are shown for area 6 and 7 in Fig. S7 (Supplemental In-
formation). We define a reference cell for each area, indicated by a
black dot. The reference cell has data collected on each mobile sam-
pling day and the most total data points in each area and is therefore
chosen as the most representative cell in each neighborhood.

Fig. 4 compares spatial concentration differences between cells to
the typical hour-to-hour temporal differences measured by the sta-
tionary monitors. Fig. S6 shows cumulative distribution functions
(CDFs) of hourly pollutant concentration differences (e.g., 4 pm minus
3 pm). For each pollutant, both the mode and the median hour-to-hour
difference is zero. Within a given day, hour-to-hour changes in con-
centrations measured at stationary monitors tend to be small. This is
reflected in typical diurnal patterns that show modest changes in con-
secutive hours (de Foy, 2018).

Fig. 4 uses the 50% cut-points of temporal variation (red lines in Fig.
S6) to evaluate spatial variations. Spatial variations larger than the 50%
range of hourly temporal variations are deemed significant, whereas
spatial variations smaller than typical hourly variations are deemed
minor. Each grid cell in Fig. 4 is colored by the median concentration
difference relative to the reference cell. As in Fig. 3 above, cells with no
fill color do not meet our data requirements (20 data points over at least
nine sampling days). Grey cells correspond to spatial differences
smaller than half of all hour-to-hour variations measured by the sta-
tionary monitors (Fig. S6). Grey grid cells, therefore, have spatial var-
iations equal to or smaller than typical temporal variations. Red or blue
cells indicate absolute spatial differences that are larger than typical
hourly variations. Hot colors show that a particular cell has higher
concentrations than the reference cell, and cool colors show cells with
concentrations smaller than the reference cell. The implication is that
the temporal variation measured at a stationary monitor effectively
captures the spatial variations in the grey grid cells, but not for red or
blue cells.

The approach we use here treats the reference cell as a pseudo-
monitor. The exact location of the reference cell does not influence the
spatial variation pattern, as we are using the relative concentration
difference. Selecting a reference cell with a lower concentration will
shift the entire spatial pattern equally.

We do not use the distributed monitor data as the reference for
several reasons. Comparing mobile data to mobile data, rather than
mobile to stationary, avoids potential issues associated with temporal
mismatch (15min resolution for RAMPs versus 1 Hz or 1min for mo-
bile), potential confounding factors due to different detection methods
for mobile sampling versus RAMPs, and confounding due to different
specific sampling locations for mobile and stationary measurements as
shown in Fig. 2 for area 8. Additionally, not every distributed monitor is
equipped with a CPC, so obtaining UFP spatial differences in every area
requires comparing the mobile data to itself.

Both sampling areas shown in Fig. 4 showed spatial heterogeneity of
NO2. The mean absolute NO2 difference was 2 ppb for both areas,
though the maximum NO2 difference was larger in downtown (area 2,
48 ppb) than in the adjacent residential neighborhood (area 4, 10 ppb).
The spatial differences in NO2 were larger than typical temporal dif-
ferences; the mean spatial difference of 2 ppb was three times larger

than the metric for temporal variation (0.6 ppb, Fig. S6).
UFP was highly dynamic both in space and time. The mean absolute

spatial difference in area 2 was 2000 cm−3, and the mean difference in
area 4 was 1600 cm−3. The large presence of empty cells in the UFP
panels of Fig. 4 was due to data FMPS quality issues as described in
Section 2.2. More than half of all colored cells in the UFP maps of Fig. 4
are grey, indicating that the spatial variation was equal to or smaller
than our temporal variation metric. This was in part due to the large
temporal variability for UFP. The temporal metric for UFP (1800 cm−3)
was 30% of regional the background UFP concentration. For NO2 the
temporal metric was only 9% of the regional background.

PM1 showed inter-cell variability larger than 1 μgm−3 even inside
an area of 1 km2. The mean absolute difference in area 2 was
0.9 μgm−3 and was skewed by a few grid cells with large (4–5 μgm−3)
differences from the reference cell. This is likely due to intense local
traffic and cooking sources in the central business district (Robinson
et al., 2018). PM1 differences in area 4 were less variable
(mean= 0.3 μgm−3, max=1.3 μgm−3) reflecting fewer sources and
the more regional nature of PM. For area 4, the mean spatial difference
was half of our temporal metric (0.5 μgm−3) meaning that on average,
PM concentrations were not spatially variable in this area.

We can use the information from Fig. 4 to inform the spatial
variability in each mobile sampling area. This has implications for
siting monitors and evaluating CTMs. Fig. 5 synthesizes the spatial
variations across each mobile sampling area. It shows the standard
deviation of the differences between each grid cell and the reference
cell for NO2, UFP, and PM1 in each mobile sampling area. We show the
standard deviation, rather than the mean absolute difference because
the latter is dependent on the specific choice of the reference cell and
the former is not.

We compare pollutant spatial variations to two land use variables in
Fig. 5: traffic, represented by vehicle density (vehicle/day/m), and
restaurants, represented by restaurant counts. We select these variables
because they are related to the sources in our site stratification. The
blue lines in Fig. 5 are linear regressions between the standard devia-
tion (SD) of pollutant relative concentration difference from the pseudo
monitor and the SD of the land use covariates calculated by dividing
each neighborhood into 50m grid cells.

For both NO2 and UFP, areas with greater spatial variability in the
land use covariates also have greater spatial variability in measured
concentrations. Variability in traffic density explains 72% of the
variability in NO2. Both traffic and restaurants are good predictors of
UFP variability (traffic R2=0.55, restaurant R2=0.69).

Neither traffic nor restaurants are good predictors for PM1 spatial
variations. This is consistent with the regional nature of PM mass
concentrations. PM is more strongly affected by long-range transport
and regional secondary PM than local sources (Sampson et al., 2013; Gu
et al., 2018).

Fig. 5 essentially shows the error bar for comparing a CTM pre-
diction to measurements in each 1 km2 area. For many urban areas (2,
3, 4, and 5), the NO2 spatial variability is 2–4 ppb. Since the regional
NO2 background is 7 ppb, the prediction of a CTM will be “good” if the
prediction is within 50% of the actual concentration.

Areas upwind and downwind of the urban core are less spatially
variable, and these areas can be reasonably represented by a single
stationary monitor. For example, areas 1, 4, 6, and 8 all have PM1

variations smaller than 1 μgm−3, which is close to the detection limit of
nephelometers used in many low-cost distributed sensors, including the
RAMP (Malings et al., in prep). Source-impacted areas (2, 3, and 5)
have larger PM1 gradients, indicating that even in an area as small as
1 km2, a single stationary monitor may not be representative of the
entire area.

The downtown area 2 has the highest pollutant concentrations but is
not the most spatially variable area in our sampling domain. This area
has the highest levels of human activity from traffic and restaurant
emissions and the most extreme street canyons but is only slightly
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above the median variability across all areas for NO2, UFP, and PM1.
This suggests that the variability in land use within an area, as shown in
Fig. 5, rather than the absolute activity level, is important for de-
termining pollutant spatial variations. Similarly, area 1, which is
overall a low-traffic area (Table 1) but has a large variability in traffic,
is the most variable area for NO2.

The data in Fig. 5 can be used to inform how many stationary
samplers will be needed to quantify pollutant concentrations within
specific tolerances. For example, for NO2, if the goal of a monitoring
network is to constrain all areas within 2 ppb, all areas except area 8
will require more than one sampler per km2. More variable areas such
as 1 and 6 may require more than two stationary monitors per square
kilometer to meet this criterion. This can have significant implications
for deploying low-cost sensor networks. Deploying more than one
sensor per km2 requires a vast number of sampling locations and is
likely unattainable at urban scales (for reference, the City of Pittsburgh
is > 150 km2 and Allegheny County, PA, is > 1900 km2). A more
likely deployment goal will be to quantify pollutant concentrations with
less spatial precision or to use a network of samplers to drive a real-time
spatial model.

3.4. Statistical evaluation of concentration distributions

Another way to assess spatial variability is to test whether

concentrations measured by mobile sampling in each grid cell are sta-
tistically different from each other. Fig. 6A shows an example of NO2

concentrations in downtown Pittsburgh (area 2). We use the Wilcoxon
rank-sum test to determine whether each cell is statistically different
(p < 0.05; blue cells) from the reference cell (black). For this driving
area and our choice of the reference cell, approximately 42% of the cells
are statistically different from the reference cell, and the remainder are
not. Put another way, the reference cell is representative of 58% of this
1 km2 driving area.

Panels 5B-D summarize this analysis for all areas and pollutants. For
NO2, the reference grid cell is representative of 40%–80% of the grid
cells in the sampling areas (mean fraction=62%). We tried relating the
fraction of cells similar to the reference to the land use variables like in
Fig. 5, but no apparent patterns emerged.

For UFP, the reference cell is representative of 40–90% of the grid
cells in each area, similar to NO2. Source-rich areas like 3 and 4 have
lower fractions of cells similar to the reference cell compared with
downwind areas (e.g., area 8). This implies that urban monitors re-
present a smaller surrounding area for human exposures compared to
the suburbs. As with NO2, no apparent relationships were found be-
tween the fraction of cells similar to the reference cell and land-use
covariates.

PM1 is more spatially homogeneous than NO2 or UFP. The reference
cell is representative of> 85% of all cells for each mobile sampling

Fig. 5. The standard deviation of concentration difference relative to the reference cell for NO2 (A–B), UFP (C–D), and PM1 (E–F) versus standard deviation in land
use variables: traffic density (left column) and restaurants density (right column). Linear least-squares regression equations are shown in each panel along with R2.
Site 1 is missing from the UFP panel due to a large fraction of data failing QA/QC checks.
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area. For areas 1, 4, 5, and 8, all of the grid cells are statistically similar
to the reference cell. This reflects the more regional nature of PM
concentrations compared to other pollutants (Robinson et al., 2007;
Sampson et al., 2013). Less spatial resolution is needed to determine the
underlying PM concentration patterns.

4. Conclusions

Most air pollutants exhibit sub-kilometer scale spatial variations
that are not captured by traditional sparse monitoring networks. In this
work, we use mobile and distributed monitoring to probe spatial var-
iations in NO2, UFP, and PM1 in different urban and background areas.

Our results have implications for quantifying pollutant spatial pat-
terns with low-cost or other distributed monitoring networks. Spatial
variations in sub-1 km2 areas are large enough that a single monitor
may not be able to represent even such a small area. For example, for
NO2, most of the neighborhoods have spatial variations that are> 50%
of the regional background. For more regional pollutants like PM1, most
of the neighborhoods sampled here have spatial variations that fall
within ∼1 μgm−3, which is close to the detection limit for many low-
cost PM monitors. Quantifying pollutant spatial patterns with high fi-
delity (e.g., 2 ppb NO2) seems unattainable in many urban areas unless
the sampling network is exceptionally dense, with more than one or two
nodes per km2, in many areas.

In general, locations with more variability in anthropogenic sources
such as traffic and restaurants have large pollutant spatial gradients.

However, neither traffic nor restaurants can completely describe the
observed spatial variability, and other covariates may be necessary for
modeling intracity pollutant variation (Eeftens et al., 2012; Li et al.,
2018, 2016). Variability in land use seems to be more important as a
determining factor for pollutant spatial variations than the absolute
activity level. Areas with the highest denity of sources have the highest
absolute concentrations but exhibit less sub-km variability than other
areas with lower overall activity but higher variability in land use.

The results presented here have implications for the design of future
air pollutant monitoring networks. Our results suggest that saturating a
city with a sensor network is unlikely to resolve all of the relevant
spatial patterns. In the end, high-resolution mapping of cities may re-
quire a combination of stationary and mobile monitoring, or high-
density monitoring networks will need to be prioritized to focus on
specific neighborhoods of concern. There is unlikely to be a single
“best” monitoring approach, even in one city. Complete sub-km map-
ping of a city with sensors or stationary monitors may be unattainable,
but saturated sampling of priority areas (e.g., near emissions sources or
in environmental justice communities) should be feasible. Future re-
search should focus on the necessary sensor density in specific micro-
environments and/or the tradeoffs between stationary pollutant net-
works and frequent mobile surveys as proposed by Apte et al. (2017).

Data availability

Data are available from the corresponding author on request.

Fig. 6. (A) Distribution of statistically different 50m cells (Wilcoxon rank-sum test, relative to black reference cell) for NO2 in downtown area 2. Bar plots show the
fraction of statistically nonsignificant cells in each area for NO2 (B), UFP (C), and PM1 (D). Site 1 is missing from the UFP panel due to a large fraction of data failing
QA/QC checks.
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